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The contribution of thermal electron-positron pairs to the 
thermodynamic properties of black-body radiation 

Altug Qigman and Hasbi Yavuz 
ITU Institute for Nuclear Energy, 80626 Maslak. Istanbul. Turkey 

Received 5 May 1995 

Abstract The contribution of thermal electmn-posibon pairs to the thermodynamio properties 
of blackbody radiation (BBR) is considered. This contribution is examined in the vicinity of 
the t e m p l u r e  corresponding Io the electron rest mass energy T, = n&lk, in which it 
becomes appreciable. The comcfion factors &'e defined as the ratio of extended themdynamic 
expressions of BBR (which also include the contributions from thermal pairs) to the familiar 
expressions of it. Then the variation of these factors with temperame is given. It is shown that 
while they have lhe same value for each property in both high and low lemperatme regimes 
( T  >> T, and T (< Tc), they have different values about 0.5 T,. It is found that for BBR, the 
ratio of the energy density to the pressure has a maximum abaut 0.33 T, and also the ratio of 
the specific heats has a minimum about 0.4 T,. 

1. Introduction 

At ordinary temperatures, the contribution from black-body radiation (BBR) to the 
thermodynamic properties of a system can be neglected. On the other hand, if the 
temperature of the system is high enough, this contribution becomes dominant. Therefore, 
thermodynamic properties of BBR are quite important in high temperature systems. 

If the temperature of a system is much lower than the temperature corresponding to 
the elecwon rest mass energy (T << T, = m , c z / k ) ,  i t  can be assumed that BBR consists 
of photons only. ' In this case, familiar thermodynamic expressions of BBR are valid. At 
temperatures near Tc (T, = 5.938 x lo9 K), however, BBR contains a considerable number of 
thermal electron-positron pairs in addition to photons. The number of pairs increases rapidly 
with increasing temperature and consequently thermal pairs make an important contribution 
to the thermodynamic properties of BBR beginning from a temperature about O.lTc. The 
expressions of BBR should be extended by considering the conhibution of thermal pairs so 
that they are also valid at these temperatures. 

In the literature, this problem has been investigated for high and low temperature regimes 
(T >> T, and T << TJ [1-5]. However, the variation of thermodynamic properties of BBR 
at temperatures about T, (O.IT, < T < lOT,) has not been studied previously. Here this 
variation is examined. The outline of this paper is as follows. In section 2, thermodynamic 
properties of thermal electron and positron gases are determined analytically without any 
temperature restrictions such as T << T, or T > Tc. In section 3 ,  correction factors 
are defined as the ratio of extended expressions of BBR to the familiar expressions of it. 
In section 4, the variation of both these factors and some thermodynamic ratios with the 
temperature are examined about Tc. It is seen that while the correction factors have the 
same value for each property at both T << Tc and T >> T,, their values are different about 
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OST,. It is found that the ratio of the energy density to the pressure has a maximum about 
0.33Tc and the ratio of the specific heats has a minimum about 0.4Tc. Assumptions and 
restrictions made in the calculations are as follows. 

(i) The non-thermal electron density ( n e )  in the system is restricted as n e  < IO3O 
So, it can be assumed that the electrons and positrons are of equal density (ne- = ne+) for 
the temperatures at which the contribution of thermal pairs is appreciable. Since IO3O m-3 is 
approximately equal to the total (not only free) electron density of the lead, this assumption 
is valid in a large density scale. 

(ii) Thermal electrons and positrons interact with both each other and photons. These 
interactions cause additional terms in the expressions obtained under the assumption that 
there is no interaction. For 7' << Tc and T >> Tc, the ratios of the additional terms to the 
expressions for the non-interacting case are given in the literature [1,3]. In the case of 
T >> T,, this ratio for the free energy of BBR goes to its maximum absolute value which is 
approximately 1/378. Since this value is negligibly small, interactions here are neglected. 

(iii) If T = 207Tc, there are not only e-++ pairs but also many muon-anti-muon pairs 
in the system. At higher temperatures, the heavier thermal particle-anti-particle pairs are 
created. If the interactions are negligible, the expressions for e-++ pairs can also be used 
for new thermal pairs by using the related T, values. To avoid repetition, only e--e+ pairs 
are considered in this work and so the temperature is restricted as T < 207T,. However, it 
should be emphasized that when the temperature is high enough for the creation of hadron 
pairs, these expressions are insufficient due to the existence of strong interaction among 
them. 

A S@man and H Yavuz 

2 Thermodynamic properties of thermal electron and positron gases 

Since it is assumed that ne- = ne+ about T,, the chemical potentials of e- and et are equal 
to zero for thermodynamic equilibrium (pe- = p e r  = 0). Thus, using the relativistic energy 
relation, electron and positron densities can be written as follows [SI 

If x = &/kT is used as a variable of integration, equation (1) becomes 

where A = x4kc/(60uo), uo is the Stefan-Boltzmann constant and a = a ( T )  = TJT. 
Considering exp(X) > I ,  if I / [ l  +exp(x)] is expanded as a series in power of exp(X) then 
equation (2) is  

Equation (3)  can be solved analytically [6]. Thus the thermal electron and positron densities 
are 

where Kz(jcr)  is the modified (or hyperbolic) Bessel function of second order. 
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Similarly, free energy expressions for e- and e+ gases are obtained by using the general 
description of it for a fermion gas [5 ]  as follows 

Using the definitions of energy, pressure and entropy in terms of the free energy, they can 
be expressed in the form 

T2k V x(x2 -or2)3/2 se- (U) = se+ (or) = - - 
3A a3 dx 2 + exp(-x) + exp(x) 

Similar expressions to equations (4), (66) and (7b) are also given in [2]. By using 
equations (6a) and (6b), the specific heat at constant volume is obtained as 

If the temperature and volume are chosen as independent variables, the specific heat at 
constant pressure is 

By making the substitution ri = ri@) = E,(a) / [VP;(a)J ,  to eliminate the derivative at 
constant pressure, equation (IO) becomes 

Thus Cb(a) can be determined from equations (6a, b), (7a.b) and (9a.b). 
In the case of a >> 1 (T, >> T ) ,  high-order terms in the series solutions become 

negligible and the term exp(X) in the denominator of the integrands becomes dominant. 
In this temperature regime, number densities of the thermal electrons and positrons are 
very small so that Boltzmann statistics can be used instead of Fermi statistics. Thus the 
expressions converge to those of the relativistic ideal Boltzmann gas [2 ,7] .  The only 
difference between them is that chemical potential is zero in the expressions here. On the 
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other hand, in the case of IY <( 1 (T, << T), rest mass energies of the thermal pairs can 
be neglected because they are small compared with their kinetic energies. Therefore they 
converge to expressions of extra relativistic Fermi gas [5 ,8 ] .  This can be seen by using 
limiting properties of modified Bessel functions [9] in the series solutions or by taking 
a = 0 in the integrals. 

Series solutions converge very rapidly due to the properties of modified Bessel functions. 
Therefore they can be calculated with less computing time in comparison with the integral 
expressions. 

3. Determination of the correction factors for thermodynamic properties of BBR 

Theoretically, there are always thermal electron and positron constituents of BBR at 
every temperature. Because the interactions between them are negligibly small, the 
thermodynamic properties of BBR are simply written as a summation of the properties 
of its constituents. Therefore, any thermodynamic property of BBR Q(u) can be written as 

A Sip?" and H Ynvuz 

Q(a) = Qy(a) + Q e - ( a )  + Q e + ( a )  = Q y ( a )  + 2 Q c Q y ( a )  1 + - ( 2&:) 
= Qy(a)CF&) (12) 

where Qy(a) ,  Q.- (a) and Q.+ (or) represent any thermodynamic property of thermal photon, 
eleckon and positron gases respectively. Here CFp(a)  may be called the correction factor 
for a Q property. The thermodynamic properties of a thermal photon gas (familiar BBR) 
are given in terms of a and some constants described here as follows. 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

where r (3)  and <(4) are Riemann zeta functions [5]. Correction factors can be obtained by 
using equations (4), (6)-(12) and (13x18). Thus the correction factor for thermal particle 
density is 

ZT,' V 
N,(ff)  = T r ( 3 ) -  a3 

6c4 V 
E , @ )  = -kC(4)- A a4 

2Tp 1 
Py(a) = -4 .34 ) -  

A a4 

8T3 V 
Sy(a) = L k C ( 4 ) -  

A LY3 
24 c3 V 

CL(a) = --k5(4);;5 A 

56T: V c;(a) = --kC(4)? 
A a 

those for energy, pressure and entropy are 
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that for the specific heat at constant volume is 

' 

and that for the specific heat at constant pressure is 

4. Results and comments 

The variation of the correction factors as a function of T becomes considerable in the vicinity 
of T,  (T, = 5.938 x IO9 K). Therefore, 10' < T (K) c IO" is considered. Variation of 
C F . ( T )  in this temperature interval is given in figure 1. In the high temperature regime 
(T  >> Tc), it is seen that the correction factor goes to 2.5 ( 1  + 2 x = 2.5) obtained by 
using the well known a value [5,81. 

T/Tc 

0 
l09,,(T) 

Figure 1. Variation of h e  correction factor for the number density of the& particle C F d T )  
plotted against both log,,(T) and TITc. 

For energy, pressure and entropy of EBR, the variations of the correction factors 
depending on the temperature are also given in figure 2. At T >> Tc, all of them go 
to 2.75 (1 + 2 x i = 2.75) obtained by using the well known i value [.5,8]. On the 
other hand, for T << Tc the contribution of thermal pairs is negligible because their number 
is small compared with the photon number, so the correction factors are equal to unity 
However, it is seen that C F E ( T )  > CFs(T) > CFp(T)  at temperatures near 0.5T,. This 
situation can be explained as follows. While the pressure of BBR is only related to the kinetic 
energy density, its energy also contains the rest mass energies of particles. Therefore the 
correction to the energy is always greater than that to the pressure. Similarly, the entropy 
of BER is related to both the number densities of thermal particles and their kinetic energy. 
Thus the correction to the entropy is also greater than that to the pressure. In the case of 
T >> T,, since the rest mass energies of particles are negligible compared with their kinetic 
energies, they behave l i e  particles without mass. So the corrections converge to the same 
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Figure 1. Viuhtioo of lhe correctioo factors for energy, pressure and entropy CFE(T) ,  CFp(T) .  
CFs(T)  plotted against both log,o(T) and TIT.. 
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Figure 3. Variation of the correclion factors for specific heats at constant volume and pressure 
CFcv(T) ,  CFcP(T)  plotted against both log,,(T) and TIT- 

value. CFc,(T) and CFc,(T) have the forms of curves in figure 3. In the vicinity of 
O.4Tc, CFc,(T) z CFc,(T) because CFE(T)  > CFp(T) .  

The specific heats ratio of the BBR can be written in the form C p ( T ) / C v ( T )  = 
$Fc,(T)/CFc,(T). In figure 4, it is seen that this ratio has a minimum about 0.4Tc 
while it is  equal to at both T << TC and T >> Tc. This minimum results from the 
difference between CFc,(T) and CFc,(T). At this point, i t  should be emphasized that the 
ratio of the specific heats is different from the isenfropic exponent since the specific heats 
here are relativistic. 

For BBR, the ratio of the energy density to the pressure can be expressed as 
E ( T ) / [ P ( T ) V ]  = 3 C F € ( T ) / C F p ( T ) .  Figure 5 shows how this ratio depends on T. 
There is a maximum about 0.33Tc because the C F E ( T )  and CFp(T)  are different. This 
maximum may be important, especially in some astrophysical and cosmological phenomena, 
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Figure 4. Ratio of the specific heats of BBR plotted against both loglo(T) and TITc. 

lop,&T I 

Figure 5. Ratio of the energy densin, to the pressure of BBR plotted against both log,,(T) and 
TIT,. 

since the pressure balances the gravitational attraction. As a result of this, it is expected 
that gravitational collapse of a system becomes faster when T goes to O.33Tc. 
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